A Novel Topic-Level Random Walk Framework for Scene Image Co-segmentation

نویسندگان

  • Ze-Huan Yuan
  • Tong Lu
  • Palaiahnakote Shivakumara
چکیده

Image co-segmentation is popular with its ability to detour supervisory data by exploiting the common information in multiple images. In this paper, we aim at a more challenging branch called scene image co-segmentation, which jointly segments multiple images captured from the same scene into regions corresponding to their respective classes. We first put forward a novel representation named Visual Relation Network (VRN) to organize multiple segments, and then search for meaningful segments for every image through voting on the network. Scalable topic-level random walk is then used to solve the voting problem. Experiments on the benchmark MSRC-v2, the more difficult LabelMe and SUN datasets show the superiority over the state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

Novelty detection in wildlife scenes through semantic context modelling

Novelty detection is an important functionality that has found many applications in information retrieval and processing. In this paper we propose a novel framework that deals with novelty detection in multiple-scene image sets. Working with wildlife image data, the framework starts with image segmentation, followed by feature extraction and classification of the image blocks extracted from ima...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Conditional Random Field for Natural Scene Categorization

Conditional random field (CRF) has been widely used for sequence labeling and segmentation. However, CRF does not offer a straightforward approach to classify whole sequences. On the other hand, hidden conditional random field (HCRF) has been proposed for whole sequences classification by viewing the segment labels as hidden variables. But the objective function of HCRF is non-convex because of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014